Making the map

Fragile_oasis_2-2 (1)

The Sentinel Space Telescope in orbit around the sun. Image courtesy of Ball Aerospace.

The Sentinel Mission will provide a unique opportunity for the public to take ownership in a historic space mission that will protect Earth, while providing the necessary roadmap for future exploration.

Sentinel is a space-based infrared (IR) survey mission to discover and catalog 90 percent of the asteroids larger than 140 meters in Earth’s region of the solar system. The mission should also discover a significant number of smaller asteroids down to a diameter of 30 meters. Sentinel will be launched into a Venus-like orbit around the sun, which significantly improves the efficiency of asteroid discovery during its 6.5 year mission.

“The B612 Sentinel mission extends the emerging commercial spaceflight industry into deep space – a first that will pave the way for many other ventures. Mapping the presence of 1000′s of near earth objects will create a new scientific database and greatly enhance our stewardship of the planet.”

Dr. Scott Hubbard

B612 Foundation Program Architect

The spacecraft and instrument use high-heritage flight proven deep space systems, originally developed by NASA, to minimize technical and programmatic risks. These heritage missions include large space-based telescopes (Spitzer, Kepler), a large format camera made up of many individual detectors (Kepler), and a cryogenically cooled instrument (Spitzer). By detective and tracking nearly all of the Near Earth Objects greater than 50 meters in diameter, Sentinel will create a map of the solar system in Earth’s neighborhood enabling future robotic and manned exploration. The Sentinel data will also identify objects that are potentially hazardous to humans to provide an early warning to protect the Earth from impact.

Features

- Most capable NEO detection system in operation

- 200 deg anti-sun Field of Regard, with a 2×5.5 deg Field of View at any point in time: scans 165 square degrees per hour looking for moving objects

- Precise pointing accuracy to sub-pixel resolution for imaging revisit, using the detector fine steering capability

- Designed for highly autonomous, reliable operation requiring only weekly ground contact

- Designed for 6.5 years of surveying operations. Actively cooled to 40K using a Ball Aerospace two-stage, closed-cycle Stirling-cycle cryocooler

- Ability to follow-up on objects of interest

Benefits

- Provides highly specialized design specifically optimized for NEO detection and discovery

- NEO detection efficiency increased using IR-detector (5 to 10.4 microns). Venus-like orbit

- Provides an astrometric accuracy of 0.2-arcseconds for any detected NEOs (typical); NEO orbits determined in as few as two detections, with multiple visits to each region of the sky.

- On board detection processing reduces data downlink volume, minimizes contact requirements

- Provides a targeted follow-up observation capability, enabling time-critical revisit of high-priority targets

- Heritage draws lineage from great observatories and pioneering scientific missions: Kepler, Spitzer, Deep Impact

This is a unique website which will require a more modern browser to work! Please upgrade today!